New Reactivity Patterns of the &Lactam Ring: Tandem C3-C4 Bond Breakage-Rearrangement of 4-Acyl- or 4-Imino-3,3-dimethoxy-t-azetidinones Promoted by $SnCl₂·2H₂O$

Benito Alcaide,' Yolanda Marth-Cantalejo, **Julih** Rodrfguez-L6pez, and Miguel A. Sierra

Departamento de QuImica Orgcinica I, Facultad de Qulmica, Universidad Complutense, 28040-Madrid, Spain

Received March **24,1993**

Introduction

Besides their use in the synthesis of β -lactam antibiotics, $\frac{1}{2}$ 2-azetidinones are versatile building blocks because ring cleavage of any of the four single bonds of the β -lactam system is enhanced by ring strain.2 Thus, access to diverse structural types of natural or synthetic compounds lacking the β -lactam ring have been reported by cleavage of the 2-azetidinone ring through any of the four possibilities.3 In this context, our recently reported stereoselective synthesis of vinyl ethers starting from N -(arylidene)- or **N-(alkylidene)amino-2-azetidinones** may be illustrative.4

In our ongoing project directed at the synthesis and synthetic applications of functionalized 2-azetidinones⁵ and at the development of new modes of reactivity of the

(2) For reviews, see: (a) Manhas, M. S.; Wagle, D. R.; Chiang, J.; Bose, A. K. Heterocycles 1988, 27, 1755. (b) Kano, S. J. J. Synth. Org. Chem. Jpn. 1978, 36, 581. (c) Ojima, I.; Hatanaka, N. J. Synth. Org. Chem. Jpn. **1982,40,209.** (d) Ojima, I. In *Asymmetric Reactions and Processes in Chemistry;* Eliel, E. L., Otsuka, S., **Eds.;** *ACS Symp. Ser.* **1982,185,109.** For leading references, see also: (e) Wasserman, H. H.; Leadbetter, M. R.; Kopka, I. E. *Tetrahedron Lett.* 1984, 25, 2391. (f) Wasserman, H. H.;
Matsuyama, H. J. *Am. Chem. Soc.* 1981, 103, 461. (g) Combie, L.; Jones,
R. C.; Osborne, S.; Mat-Zin, Ab. R. J. *Chem. Soc., Chem. Commun.* 198 **959.** (h) Ojima, **I.;** Pei, Y. *Tetrahedron Lett.* **1992,33, 887.**

(3) For **N162 bond** cleavage, **see: (a)** Stoodley, R. J. *Tetrahedron* **1976,31,2321.** (b) **Sammes,** P. G. *Chem. Rev.* **1976,76,113.** *(c)* **Issaw, N.** *S. Chem. SOC. Rev.* **1976,5,181.** (d) **Labia,** R.; Morin, C. J. *Antibiot.* **1984,37,1103.** *(e) Topics in Antibiotic Chemistry;* **Sammee,** P. G., Ed.; John Wiley: **New** York, **1980;** Vols. **3** and **4.** For **C2C3** bond cleavage, *see: (0* Cossio, F. P.; **Amieta,** A.; Oiarbide, M.; Aparicio, D.; Rubiales, G.; Palomo, C. *Tetrahedron Lett.* **1988,28,3133.** (e) Palomo, C.; Coesio, F. P.; Rubiales, *G.;* Aparicio, D. *Tetrahedron Lett.* **1991, 32, 3115.** (h) Batason, J. H.; Kaura, A. C.; Southgate, R. *Tetrahedron Lett.* **1991,32, 2086.** (i) Bateeon, **J.** H.; Fell, S. C. **M.;** Knur4 A. C.; Southgata, R. *J. Chem. Soc. Perkin Trans. I* **1992,1677. Cj)** Kampe, K. D. *Tetrahedron* Lett. 1969, 117. For C3–C4 bond cleavage, see: (k) Bose, A. K.; Kugajevsky,
I. *Tetrahedron* 1967, 23, 957. For C4–N1 bond cleavage, see: (l) Ojima,
I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C. M.; Brigaud, Tetrahedron 1992, 48, 6985. (m) Perelman, H., Mizsak, S. A. J. Am.
Chem. Soc. 1962, 84, 4988. (n) Opitz, G., Koch, J. Angew. Chem., Int.
Ed. Engl. 1963, 2, 152. (o) Ojima, I.; Chen, H.-J. C.; Nakahashi, K. J. Am.
Chem. Soc Soc., Chem. Commun. 1981, 344. For cleavage of the β -lactam ring under electron impact maas spectrometry, *see: (0* Bourgeois, G.; Picard, J. P.; Cossio, F.P.; Palomo, C.Adv.Mass Spectrom. 1989, 11A, 876. (s) Georgiev, V. S.; Coomber, D. C.; Mullen, G. B. Org. Mass Spectrom. 1988, 23, 283, and refs cited therein. For thermal and photochemical fragmentation of @-lactame, *see:* (t) Paquette, L. A.; Wyvratt, M. J.; **Wen,** G. R., Jr. *J.* **Am.** *Chem. SOC.* **1970,92,1763.** (u) Fischer, M. *Chem. Ber.* **1968,101,2669. (4)** Alcaide, B.; Wanda, M.; PBrez-Castah, J.; Sierra, M. A. *J. Org. Chem.* **1993,58, 297.**

2-azetidinone ring, 4.58 we thought that the presence of groups with the ability to stabilize a positive charge at position 3 of the β -lactam ring might promote cationic rearrangements in the presence of acids, through a C3-C4 bond breakage. Initially, we focussed our attention on **3,3-dimethoxyazetidin-2-ones** analogous to **1** but lacking additional nucleophilic groups. Disappointingly, compounds 1 bearing aryl or alkyl substituents at C4 of the 2-azetidinone ring were resistant to reaction in the presence of protic or Lewis acids and external nucleophiles. However, when 4-imino- or 4-acyl-2-azetidinones l having an additional nucleophilic group were reacted in the presence of $SnCl₂·2H₂O⁶$ a smooth rearrangement was observed leading cleanly to new pyrazine and/or 1,4-oxazine derivatives **2** and 3 (Scheme I). Reported here is the study of this novel acid-catalyzed rearrangement of the β -lactam ring involving the cleavage of the C3-C4 bond. As far as we know, the only related acid-catalyzed rearrangement of monocyclic β -lactams, namely the conversion of 3-(acy**lamino)-l,4-diphenyl-2-azetidinones** to 3-(acylamino)-l,2 diphenyl-5-imidazolines in refluxing xylene in the presence of iodine, was reported by Bird,' while the rearrangement of penicillin to penillonic acid is **known** to occur in the bicyclic series.8 Mechanisms involving carbocationic intermediates were proposed for these processes. In addition, C3-C4 bond cleavage through carbanion intermediates was reported to account for the base-promoted hydrolysis of β -lactams having nitrogen substituents at C4 and two phenyl substituents at C3.9

Results **and** Discussion

First, 4-acyl β -lactams 1c-e were reacted with different protic and Lewis acids. The best results were obtained by working with an equimolar amount of $SnCl₂·2H₂O$ in $CH₂$ - $Cl₂$ at room temperature (Table I).¹⁰ Disappearance of

⁽¹⁾ For general reviews of synthesis and biology of β -lactam antibiotics, **see: (a)** Dllrckheimer, W.; Blumbach, J.; Lattrell, R.; Scheunemann, K. H. Angew. Chem. Int. Ed. Engl. 1985, 24, 180. (b) Chemistry and Biology
of β-Lactam Antibiotics; Morin, R. B.; Gorman, M., Eds.; Academic
Press: New York, 1982; Vols. 1–3. (c) Recent Progress in the Chemical
Synthesis of A Kalvoda, J.; Lang, M.; Schneider, P.; Sedelmeier, G. In *New Aspects of Organic Chemistry Z,* Yoshida, **Z.,** Shiba, T., **Ohshiro,** Y., Eds.; VCH: Tokyo **1989;** p **419.**

⁽⁵⁾ (a) Alcaide, **B.;** Domlnguez, G.; Martin-Domenech, A.; Plumet, J. *Heterocycles* **1987,26,1461.** (b) Alcaide, B.; Domhguez, G.; Plumet, J.; Sierra, M. A. *Heterocycles* **1988,27, 1317.** (c) Alcaide, B.; G6mez, A.; Plumet, J.; Rodríguez-López, J. Tetrahedron 1989, 45, 2751. (d) Alcaide, B.; Rodríguez-López, J.; Monge, A.; Pérez-García, V. Tetrahedron 1990, 46, 6799. (e) Alcaide, B.; Martín-Cantalejo, Y.; Plumet, J.; Rodríguez-López, Lopez, J.; Sterra, M. A. *I etraneuron Lett. 1991, 32, 803. (13) Aucause, B.; Commiguez, G.; Plumet, J.; Sierra, M. A. J. Org. Chem. 1992, 57, 447. (g)*
Alcaide, B.; Martín-Cantalejo, Y.; Pérez-Castells, J.; Rodríguez-Lópe

^{5921. (6)} For recent applications of SnCl₂ as a Lewis acid in organic synthesis see, among others: (a) Nakahira, H.; Ryu, I.; Ogawa, A.; Kambe, N.; Sonoda, N. *Organometallics* 1990, 9, 277. (b) Singhal, G. M.; Das, N. B 3/10. (d) Holmquist, C. R.; Roskamp, E. J. J. *Urg. Chem.* 1989, 54, 3258.
(f) Ford, K. L.; Roskamp, E. J. J. *Org. Chem.* 1989, 54, 3258.
(f) Ford, K. L.; Roskamp, E. J. *Tetrahedron Lett.* 1992, 33, 1135.
(7) (a) Bird, C

⁽C) **1971,3155.**

⁽⁸⁾ The ChemistryofPenicillin;Clarke, H. J., John, J. R., **Robineon,** R.; **Eds.;** Princeton University Prees: Princeton, **NJ, 1949.**

⁽⁹⁾ Bow, A. K.; **Kugajevsky,** I. *Tetrahedron* **1967,23,957.**

⁽¹⁰⁾ Other Lewis acide euch **aa** ZnCl2,ZnIn, Tic&, and AlCh **were** unable to promote the rearrangement.

 α In pure, isolated material. β In all cases $Ar = p$ -MeOC₆H₄, except **for compounds 1f and 4f (Ar** = **Ph). Compounds 3c and 4c were obtained under separate reactions.**

the starting material occurred after a few hours. Standard workup gave the reaction product which was then purified by either crystallization or column chromatography. Compounds **1** bearing a ketal functionality at the 3 position of the four-membered ring may, in principle, be hydrolyzed to 3-oxo β -lactams, which in turn are important synthetic intermediates.ll However, the isolated materials showed spectroscopic data which differed widely from that expected for 3-oxo @-lactams. Thus, compounds **3** have resonances attributable to olefinic protons in the region of 6.41–6.83 ppm in their ¹H NMR spectra while the only resonance attributable to a carbonyl group in their 13C NMR spectra appears at 160.0-149.8 ppm, far away from the $190.0-200.0$ ppm expected for an oxo group in a 3-oxo @-lactam.11cJ2 Spectroscopic data for compounds **3** are in good accordance with that expected for 1,4dihydrooxazine derivatives. Specially illustrative is the reaction of compound **IC.** Depending on the reaction time compound **3c** or its precursor, cyclic orthoester **4c,** were selectively obtained.¹³ Thus rearrangement to the six membered ring occurs prior to hydrolysis of the ketal group.

In order to prove the generality of the process above, the reactions of 4-imino β -lactams **la,b** with $SnCl₂·2H₂O$ were carried out next (Table I). In these cases a clean, almost quantitative conversion to reaction products was obtained. The spectroscopic data of the reaction products were in good accordance with pyrazine-2,3-dione derivatives **2.** These results confirm that imine groups attached to the position 4 of the β -lactam ring are also suitable to give the C3-C4 **fragmentation-rearrangement** process. Clearly, in these cases the rearrangement competes

(13) Compound 4c was quantitatively converted into dihydrooxazine 3c under the reaction conditions used obtaining 3c directly from 1c. Longer
reaction time (24 h) promotes the formation of formamide 5, through
hydrolysis–decarboxylation of dione 3c.

favorably with the hydrolysis of the imino group, which is not the case when aqueous hydrochloric acid is used (see below).

Finally, @-lactam **If** bearing an dimethoxymethyl group at the C4 position was **tested.** Again, a similar rearrangement to the six-membered oxazine occurs, but the reaction time was considerably longer than for 1a-e. Moreover, the reaction of **If** stopped at the stage of ortholactone **4f** which either remains unaltered at longer reaction times or decomposes when more energetic reaction conditions are used. Compound **4f** deserves some additional comments. When the 1H and 13C NMR spectra of ortholactone **4f** were recorded in CDCls at **room** temperature (294 **K)** two separate sets of signals were observed in a $2/1$ ratio which suggested the possible presence of two isomeric products. When the ¹H NMR spectra of 4f was recorded in DMSO- d_6 , the duplicity of signals still remained. However, coalescence of the signals was observed in spectra taken at higher temperatures. Molecular modeling showed that compound 4f **has** two preferred conformations. The above effects observed in compound **4f** may be attributable to the interaction of the methyl group in **4f** with the N-phenyl moiety, interaction which is not present in **4c,** which shows one single set of resonances in both its ¹H and 13C NMR spectra.

The above rearrangements **also** take place in the presence of protic acids $(H_2SO_4$ or HCl). However, yields were erratic and mixtures of the different reaction products were usually obtained. Thus, heterogeneous (CHCl₃/5%) aqueous HC1) hydrolysis of @-lactam **la,** yields, depending on the reaction time, mixtures of compounds **IC, 2a, 3c, 4c,** and the decomposition product formed by hydrolysis of dione **3c,** the **N-(p-anisyl)-N-(2-oxoethyl)formamide 5.** lH NMR monitoring of the reaction of **la** shows that pyrazine **2a** is formed in the initial burst of the reaction, and ita concentration remains mostly unchanged with time. Hydrolysis of the imino group to aldehyde **IC** competes favorably with rearrangement to pyrazine **2a,** and **IC** slowly rearranges to morpholine **3c** through ortholactone **4c.** Finally, compound **3c** is decomposed to **6,** after several days.

It seems clear from the above data that both imino and carbonyl groups in compounds **1** are prone to promote the rearrangement to compounds **2-4.** Reaction pathways in Scheme I1 may account for the observed reaction products. Both mechanistic rationalizations rest in coordination of tin (or the proton if a protic acid is used) to the starting material **as** the promoter of the rearrangement. Path A involves coordination of tin to the group at C4 to yield intermediate 6 which would evolve by C3-C4 bond breakage due to the enhanced reactivity of the double bond and the ability of the ketal to stabilize the emerging carbocation at C3 to give **7.** Annelation of intermediate **7** renders compounds **4,** which are further hydrolyzed giving the final products **2** and **3,** except for compound **If** which yields exclusively ortholactone **4f** upon treatment with tin(I1) chloride. Alternatively, compounds **1** upon dicoordination at the ketal functionality to yield **8,** may evolve through a concerted or stepwise six-electron rearrangement to compounds *4.14*

⁽¹¹⁾ See, for example: (a) Palomo, C.; Aizpurua, J. M.; Coeeio, F. P.; Garcfa, J. M.; Lbpez, M. C.; Oiarbide, M. *J. Org. Chem.* **1990,55,2070.** (b) Palomo, C.; Aizpurua, J. M.; López, M. C.; Arruekoetxea, N.; Oiarbide,
M. *Tetrahedron Lett.* 1990, 31, 6425. (c) van der Veen, Bari, S. S.;
Krishnan, L.; Manhas, M. S.; Bose, A. K. J. Org. Chem. 1989, 54, 5758.
(d) Tu *Tetrahedron Lett.* **1987,** *28,* **5481. (e) Chiba, K.; Mori, M.; Ban, Y.** Tetrahedron 1985, 41, 387. (f) Manhas, M. S.; Bari, S. S.; Bhawal, B. M.;
Bose, A. K. *Tetrahedron Lett*. 1984, 25, 4733. (12) Alcaide, B.; Martín-Cantalejo, Y., unpublished results.

⁽¹⁴⁾For some recent references on the attack of nucleophiles to coordinated ketals see, for example: (a) Sammakia, T.; Smith, R. S. J. Am. Chem. Soc. 1992, 114, 10998. (b) Granja, J. R.; Castedo, L.; Mouriño, *Am. Chem.Soc.* **1992,114,10998. (b) Granja, J.R.;Caetedo,L.;Mour&o, A.** *J. Org. Chem.* **1993,58,125. (c) Molander,** *G.* **A.; Haar, J. P.** *J. Am. Chem. SOC.* **1993,115,40.**

The key feature of the process above is the presence of a ketal moiety at the C3 of the 2-azetidinone ring. Thus, the ketal group in @-lactam **9,** bearing two methyl groups at C3, is smoothly hydrolyzed by $SnCl₂·2H₂O$ to the corresponding aldehyde **10,** the final reaction product in these conditions. When more energetic conditions were used (concentrated sulfuric acid), a new product, whose spectroscopic and analytical data are in good accordance with the structure of γ -lactam 11, is formed. In this case, a different type of $C3-C4$ bond breakage, through the initial shift of the C3–C4 bond to the protonated aldehyde group to give the five-membered ring carbocationic intermediate 13, occurs. A 1,2-hydride shift to form intermediate **14** followed by loss of a proton would give **¹¹**(Scheme 111).

The change in reaction pathway for compound **10** supporta the decisive role of the methoxy groups at C3 in promoting the rearrangement of compounds **1,** but does

not allow an unequivocal choice between the two reaction pathways in Scheme 11. It can be argued, for example, that tin coordination of the carbonyl group of compounds **lc-e** should promote a reaction analogous to that observed in compound **10.** Subsequently, formation of fivemembered ring compounds analogous to **11** should be observed in these cases. Since this is not the case, path B involving coordination at the ketal moiety should be responsible for the observed rearrangement. However, it is equally reasonable to propose that the ability of two methyl groupsto stabilize a carbocation at C3 is not enough to promote the cationic rearrangement in Scheme 11, two methoxy groups being needed indeed.

In conclusion, a novel, $SnCl_{2}·2H_{2}O$ -promoted carbocationic rearrangement of β -lactams, having a ketal functionality at the C3 carbon and **a** nucleophilic sp2 (imino or carbonyl) group at C4 to yield **novelpyrazine-2,3-diones** or dihydro-1,4-oxazines derivatives, is reported. On the basis of experimental evidence, this process is thought to occur through C3-C4 bond breakage promoted by the ability of the ketal group to stabilize an emerging positive charge on the ketal carbon.

Experimental Section

General. General experimental data and procedure have been previously reported.⁵ Compounds 1a, 1b, 1f, and 9 were prepared by standard lithium enolate-imine methodology.& Compounds IC and Id were prepared by acid hydrolysis of la and lb. Compound 1e was prepared according to literature procedure.^{5d} **See** supplementary material for full experimental procedure and spectroscopic data.

General Procedure for the Reaction of Compounds 1 with $SnCl₂·2H₂O$. To a stirred suspension of $SnCl₂·H₂O$ (0.5 mmol) in CH_2Cl_2 (10 mL) cooled to 0 °C was added a solution of the corresponding β -lactam (0.5 mmol) in the same solvent (10 mL). The ice-water bath **was** removed, and the mixture was stirred at rt for the time indicated. After diluting with CH₂Cl₂ and filtering through Celite, the solvent was removed in vacuo. Whenever possible, crude producta were purified by crystallization (solids) or flash chromatography (oils, silica gel, hexanes/EtOAc 41), after ¹H NMR examination.

Reaction time: 20 h. From 100 mg (0.28 mmol) of la and SnCl₂.2H₂O (62 mg, 0.28 mmol) was obtained 81 mg (95%) of compound 2a after crystallization as a white solid: mp 296-297 CH=CH), 6.98 (d, 4H, $J = 9.0$ Hz, Ar), 7.35 (d, 4H, $J = 9.0$ Hz, (KBr) 1680; MS m/z 324 (M⁺^{*}, parent), 296 (M - 28), 281, 267, 253, 148, 134, 92, 77. Anal. Calcd for $C_{18}H_{16}N_2O_4$: C, 66.66; H, 4.97; N, 8.64. Found: C, 66.53; H, 4.99; N, 8.69. 1,4-Di-(p-anisyl)-2,3-dioxo-1,2,3,4-tetrahydropyrazine (2a). [•]C (EtOAc); ¹H-NMR δ 3.84 (s, 6H, 2 × OCH₃), 6.37 (s, 2H, *Ar);* 'SC-NMR **S** 159.3, 155.6, 132.1, 126.6, 114.6, 113.5, 55.4; IR

1,4-Di-(panisyl)-S,6-dimethyl-2,3-dioxo- 1,2,3,4-tetrahydropyrazine (2b). Reaction time: $7 h$. From $100 mg (0.25 mmol)$ of 1b and $SnCl₂·2H₂O$ (56 mg, 0.25 mmol) was obtained 81 mg (99%) of compound 2b after crystallization as a white solid: mp >290 "C dec (EtOAc/hexanes); 1H-NMR *6* 1.81 (s,6H, 2 **X** CHa), 114.8,55.4,16.5; IR (KBr) 1690; MS *m/z* 352 (M+*), 324 (M- 28), 148 (parent), 107, 92, 77. Anal. Calcd for $C_{20}H_{20}N_2O_4$: C, 68.17; H, 5.72; N, 7.95. Found: C, 68.25; H, 5.67; N, 7.86. 3.85 (8,6H, 2 **X** OCHs), 7.01 (d, 4H, J ⁼9.0 Hz, *Ar),* 7.16 (d, 4H, J ⁼9.0 Hz, *Ar);* '3C-NMR **S** 159.5, 156.3, 130.3, 128.7, 116.4,

4-(p-Anisyl)-3,4-dihydro-2,2-dimethoxy-3-oxo-2H-1,4-oxazine (40). Reaction time: 15 min. From 600 mg (1.62 mmol) of 1c and $SnCl₂·2H₂O$ (364 mg, 1.62 mmol) was obtained 189 mg **(44** %) of compound 40 after crystallization **as** a white, crystallime solid: mp 61-63 °C (EtOAc/hexanes); ¹H-NMR δ 3.52 (s, 6H, 2 (d, 1H, $J = 4.5$ Hz, $=$ CH), 6.92 (d, $2H, J = 8.7$ Hz, Ar), 7.24 (d, **114.4,112.6,108.8,55.4,51.2** (20; IR (KBr) 1700. MS *m/z* 265 (M+*), 237 (M - 28), 234,208 (parent), 206,191,134,132,92,77, **X** OCHs), 3.80 (8,3H, OCHs), 5.88 (d, lH, *J=* 4.5 Hz, =CH), 6.22 2H, J ⁼8.7 Hz, *Ar);* "C-NMR *6* **158.7,158.0,131.6,126.6,126.3,**

59. Anal. Calcd for C₁₃H₁₅NO₅: C, 58.86; H, 5.70; N, 5.28. Found: C, 58.89; H, 5.86; N, 5.23.

3,4-Dihydro-2,2-dimethoxy-5-methyl-3-oxo-4-phenyl-2H-1,4-0xazine **(4f).** Reaction time: 65 h. From 120 mg (0.41 mol) of 1f and SnCl₂-2H₂O (92 mg, 0.41 mmol) was obtained 96 mg **(95** %) of compound 4f after chromatography **as** a colorless oil: 1H-NMR (minor) 1.71 (d, 3H, J ⁼1.5 **Hz,** CHs), 3.63 *(8,* 3H, 7.30 (m, 5H, **Ar);** (major) 1.66 (d, 3H, J ⁼1.2 Hz, CHs), 3.63 *(8,* 7.21-7.30 (m, 5H, **Ar);** 'H-NMR (348 K, **DMSO-&)** 6 1.58 (s,3H, 7.26-7.41 (m, 5H, *Ar);* W-NMR 6 (minor) 163.0, 160.1, 143.2, 139.4, 129.2, 128.0, 126.6, 113.6, 60.1, 52.2, 29.6; (major) 163.5, **161.4,145.7,137.5,129.0,126.9,125.3,115.3,60.1,52.2,29.6;** (CHCb) 1700,1640, **MS** *m/z* 249 **(M+*),** 217,189,161,117 (parent), 77. Anal. Calcd for C₁₃H₁₅NO₄: C, 62.62; H, 6.07; N, 5.62. Found: C, 62.71; H, 6.00; N, 5.58. OCHa), 3.83 (s,3H, OCHs), 6.00 (d, **lH,** *J=* 1.5 Hz, CH-), 7.21- 3H, OCH₃), 3.83 (s, 3H, OCH₃), 6.10 (q, 1H, $J = 1.2$ Hz, CH=), CHs), 3.59 (8,3H, OCHs), 3.76 (s,3H, OCHa), 6.38 *(8,* lH, **CH=),**

action time: 2.5 h. From 600 mg (1.62 mmol) of 1c and SnC12.2H20 (364 mg, 1.62 mmol) was obtained 266 mg (75%) of compound **3c** after chromatography **as** a colorless oil: 'H-NMR J = 4.8 Hz, -CH), 6.98 (d, 2H, J = 9.0 Hz, Ar), 7.27 (d, 2H, J = 9.0 Hz, Ar); IR (CHCl₃) 1780, 1740, 1710. Anal. Calcd for N, 6.41. 4-(p-Anisyl)-3,4-dihydro-2,3-dioxo-2H-1,4-oxazine (3c). Re- δ 4.86 (s, 3H, OCH₃), 6.41 (d, 1H, $J=$ 4.8 Hz, $=$ CH), 6.70 (d, 1H, $C_{11}H_9NO_4$: C, 60.28; H, 4.14; N, 6.39. Found: C, 59.87; H, 4.40;

4-(pAnisyl)-3,4-dihydr5,6-dimethyl-2,3-diox0-2H-1,4-0xazine (3d). Reaction time: 1.5 h. From 100 mg (0.34 mmol) of $1d$ and $SnCl₂·2H₂O$ (76 mg, 0.34 mmol) was obtained 74 mg (88%) of compound **3d** after chromatography **as** a white solid mp 178- 180 °C (MeOH/Et₂O); ¹H-NMR δ 1.65 (s, 3H, CH₃), 2.11 (s, 3H, 128.7, 115.5, 115.0, 55.5, 15.7, 14.8; IR (KBr) 1760, 1700, 1680, **MS** *m/z* 247 **(M+*),** 219 **(M** - 28), 148 (parent), 92, 77. Anal. Calcd for $C_{13}H_{13}NO_4$: C, 63.15; H, 5.30; N, 5.66. Found: C, 63.03; H, 5.38; N, 5.88. CHa), 3.82 (e, 3H, OCHs), 6.97 (d, 2H, J ⁼9.0 Hz, *Ar),* 7.08 (d, 2H, J ⁼9.0 Hz, *Ar);* 'BC-NMR **6 160.0,154.7,151.7,131.7,128.8,**

4-(pAnisyl)-3,4-dihydro-2,3-dioxo-6-p henyl-2H-1,4-oxazine *(3e).* Reaction time: 2 h. From 100 mg (0.30 mmol) of $1e$ and $SnCl₂·2H₂O$ (68 mg, 0.30 mmol) was obtained 84 mg (95%) of compound **38** after crystallization **as** a pale yellow solid mp 130-140 °C dec (EtOAc); ¹H-NMR δ 3.85 (s, 3H, OCH₃), 6.83 (s, lH, =CH), 7.02 (d, 2H, J ⁼9.0 Hz, Ar), 7.35-7.59 (m, 7H, *Ar);* 126.4, 123.6, 114.7, 109.7, 55.5; IR (KBr) *Y* 1760, 1690; **MS** *m/z* **(M+*),** 267 **(M** - 28),208,180,134 (parent), 107,92,77,63. Anal. Calcd for $C_{17}H_{18}NO_4$: C, 69.15; H, 4.44; N, 4.74. Found: C, 69.23; H, 4.51; N, 4.60. **'8C-NMR** 6 159.6, 154.1, 149.8, 137.1, 130.8, 129.2, 129.1, 128.9,

N- **(pAnisy1)-N- (2-oxoet hyl) formamide (5).** Reaction time: 24 h. From 230 mg (0.87 mmol) of $1c$ and $\text{SnCl}_{2} \text{2H}_{2}$ O (195) mg, 0.87 mmol) was obtained **69 mg** (35 %) of compound **5** after chromatography **as** a pale yellow oil: 'H-NMR 6 3.79 **(a,** 3H, 2H, J ⁼9.0 **Hz, Ar),** 8.40 *(8,* lH, CH-O), 9.63 *(8,* lH, CH-O); (CHCb) 3350,1740,1670; **MS** *m/z* 193 **(M+*),** 164 **(M** - **29),** ¹³⁵ (parent), 108, 77. Anal. Calcd for C₁₀H₁₁NO₃: C, 62.16; H, 5.75; N, 7.24. Found: C, 62.19; H, 5.69; N, 7.31. OCH₃), 4.49 (s, 2H, CH₂), 6.89 (d, 2H, $J = 9.0$ Hz, Ar), 7.18 (d, **'BC-NMR 6 196.7,163.4,159.7,134.4,126.9,115.7,57.1,56.4;** IR

1-(p-Anisyl)-3,3-dimethyl-4-formyl-4-methylazetidin-2**one** (10). Reaction time: 12 h. From **95** mg (0.34 mmol) of **9** and $SnCl₂·2H₂O$ (76 mg, 0.34 mmol) was obtained 79 mg (95%) of compound 10 after crystallization as a white solid: mp 103-105 °C (EtOAc/hexanes): ¹H-NMR δ 1.30 (s, 3H, CH₈), 1.35 (s, 3H, CH₃), 1.58 (s, 3H, CH₃), 3.78 (s, 3H, OCH₃), 6.86 (m, 2H, Ar), 7.26 (m, 2H, Ar), 9.95 (s, 1H, CH=O); ¹³C-NMR δ 202.6, 170.3, **156.6,129.8,119.1,114.5,70.1,57.7,55.4,19.0,18.6,13.8;IR(KBr)** 1755, 1730. Anal. Calcd for C₁₄H₁₇NO₃: C, 67.98; H, 6.93; N, 5.67. Found: C, 67.71; H, 7.06; N, 5.85.

Synthesis of l-(pAnisyl)-3,3,S-trimethylpyrrolidine-2,4 dione (11). A solution of 25 *mg* (0.1 mmol) of **10** in chloroform (5 mL) was vigorously stirred with 2 drops of concd H_2SO_4 at room temperature for 8 h. The reaction was quenched with water (2 mL), the aqueous layer was extracted with chloroform (3 **X** 10 mL), and all the organics were successively washed with 5% NaHCO₃ and water and dried (MgSO₄). After filtration and evaporation of the solvent, the crude product was purified by column chromatography (silica gel, hexanes/EtAcO 41), yielding 11 as a pale yellow oil: yield 75% ; ¹H-NMR δ 1.31 (s, 3H, CH₃), OCHS), 4.44 (9, lH, J ⁼6.6 *Hz,* CH), 6.91 (m, 2H, *Ar),* 7.30 (m, **55.5,47.1,21.6,21.2,16.2;** IR (CHCh) 1770,1700. Anal. Calcd for $C_{14}H_{17}NO_3$: C, 67.98; H, 6.93; N, 5.67. Found: C, 68.03; H, 6.89; N, 5.73. 1.32 (d, 3H, J ⁼6.6 **Hz,** CHs), 1.34 *(8,* 3H, CHs), 3.80 *(8,* 3H, 2H, **Ar);** "C-NMR 6 213.4,174.5,157.9, 128.7,125.7,114.5,61.8,

Acknowledgment. Support for this work from the DGICYT (MEC-SPAIN, Grant PB90-0047) and CAM (Comunidad Autonoma de Madrid, Grant 290/92) is acknowledged. One of us (Y.M.-C.) thanks M.E.C. (Spain) for a predoctoral grant. We also thank Prof. A. Miller (University of Connecticut) for a careful revision of the manuscript and fruitful discussions.

Supplementary Material Available: Additional procedures and compound characterization data (4 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and *can* be ordered from the **ACS;** see any current masthead page for ordering information.